
Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 27 | P a g e

Utilizing Symbolic Programming in Analog Circuit Synthesis of

Arbitrary Rational Transfer Functions

Amjad Fuad Hajjar
Department of Electrical and Computer Engineering, King Abdulaziz University, Saudi Arabia

ABSTRACT
The employment of symbolic programming in analog circuit design for system interfaces is proposed. Given a

rational transfer function with a set of specifications and constraints, one may autonomously synthesize it into an

analog circuit. First, a classification of the target transfer function polynomials into 14 classes is performed. The

classes include both stable and unstable functions as required. A symbolic exhaustive search algorithm based on

a circuit configuration under investigation is then conducted where a polynomial in hand is to be identified. For

illustration purposes, a set of complete design equations for the primary rational transfer functions is obtained

targeting all classes of second order polynomials based on a proposed general circuit configuration. The design

consists of a single active element and four different circuit structures. Finally, an illustrative example with full

analysis and simulation is presented.

Keywords – Analog Circuits, Filters, Interface, Maple, Symbolic Programming, Transfer Functions

I. INTRODUCTION
Even with the advances in the digital world of

electronics, analog circuit design is still the heart and

most sensitive part of many engineering systems

involving sensing and actuation. In consequence,

multiple different ways are employed in designing

analog circuits, hand-design being the obvious and

foremost tactic. Nevertheless, automating the design

process of analog circuits is becoming more crucial,

not only for the time-to-market constraints but also

for having better quality designs. Hence, automation

methods are developed in this field such as heuristics

inspection [1], knowledge-based synthesis [2],

evolutionary computation involving genetic

algorithms [3-7], and neural network based designs

[8]. Once the synthesized circuit is completed, it is

then verified to satisfy the required specifications.

In regard to the software applications assisting

engineers in analog circuit design, a nice survey is

presented in [9] comparing the different CAD tools in

terms of features, simulation domains, speed,

flexibility, and ease-of-use. Yet, most of the tools are

based on numerical simulations and syntheses lacking

the deployment of symbolic programming.

Computer Algebra Systems for symbolic and

numeric programming have been developed for a

long time and are becoming very power tools for

researchers and engineers aiding in mathematical

problems and simulations. When solving a problem

by thoughts and ideas, it would be very helpful to get

assistance from a tool that quickly carries out all the

mathematical developments symbolically. Thus

utilizing symbolic programming in this field is

advantageous. The objective of this work is then to

answer the following question: how to implement a

certain transfer function in analog circuit to interface

a specific unit in an electronic system?

In this paper, the utilization of symbolic

programming in implementing arbitrary transfer

functions to analog circuits is presented. First, a

classification of an arbitrary polynomial is proposed,

followed by an algorithm for symbolically and

autonomously identifying the polynomial category. A

general circuit configuration is also proposed as an

example to emphasize the effectiveness of symbolic

programming in this field. Finally a complete set of

design equation for an arbitrary rational transfer

function is illustrated.

II. POLYNOMIAL CATEGORIZATION
The focus of this work is to implement an arbitrary

rational transfer function of the general form:

M
M

N
N

sbsbsbb

sasasaa
sH









2

210

2
210)((1)

where ai, bj are real coefficients, aN, bM ≠ 0, N and

M are the orders of the numerator and denominator of

the transfer function, respectively. Without loss of

generality, studying up to the second order would be

sufficient since the zeros and poles of the function

must be real or complex conjugates, hence the higher

orders can be obtained by cascading multiple lower

order stages. In that, we classify the numerator and

denominator polynomials into 14 categories based on

their zeros as shown in Table I.

RESEARCH ARTICLE OPEN ACCESS

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 28 | P a g e

Table I. Polynomial Categories

Cat Form Zeros

01 NZ a -

02 S0 s 0

03 S1N sa a

04 S1P sa a

05 D0 s2 0,0

06 D1N s.(sa) 0,a

07 D1P s.(sa) 0,a

11 DQR s2a2 ±a

12 DQC s2a2 ±ja

08 DNN (sa).(sb) a,b

09 DNP (sa).(sb) a,b

10 DPP (sa).(sb) a,b

13 DXN s2asb A±jB

14 DXP s2asb A±jB

Note: a, b, A, B are all positive constants

These polynomials can also be classified into two

sets: primary and secondary, where the secondary

polynomials can be obtained from the primary set

using two cascaded stages. Thus, any arbitrary

transfer function can be achieved when all the

primary polynomials are implemented.

Table II. Primary and Secondary Polynomials

Primary Set Secondary Set

NZ a D0 s2 S0× S0

S0 s D1N s.(sa) S0× S1N

S1N sa D1P s.(sa) S0× S1P

S1P sa DQR s2a2 S1N× S1P

DQC s2a2 DNN (sa).(sb) S1N× S1N

DXN s2asb DNP (sa).(sb) S1N× S1P

DXP s2asb DPP (sa).(sb) S1P× S1P

III. CLASSIFICATION ALGORITHM
One may classify a polynomial expression simply by

its order. However, the behavior differs among the

same order based on the type of its zeros. For the first

order polynomials, we certainly expect its zero to be

real since we are implementing it with a real circuit.

Thus, the classification of the first order polynomials

is based on the sign of its zero. Let „a’ be a positive

real number. We then have three different classes

(Table III):

Table III. 1
st
 Order Zero Classes

Zero Category Form

0 S0 s

+ve S1P sa

-ve S1N sa

For a second order polynomial, its zeros can either

be real or a pair of complex conjugates. In the real

zero case, the nine categories shown in Table IV are

possible based on the signs of the zeros, given that „a‟

and „b‟ are positive constants.

Table IV. 2
nd

 Order Real Zero Classes

1st

Zero

2nd

Zero
Category Form

0 0 D0 s2

0 +ve D1P s.(sa)

0 -ve D1N s.(sa)

+ve +ve DPP, DP2 (sa).(sb) or (sa)2

+ve -ve DNP, DQR (sa).(sb) or (s2a2)

-ve -ve DNN, DN2 (sa).(sb) or (sa)2

For the complex conjugate zeros, the real part of

the zeros would distinguish the category of the

polynomial as shown in Table V.

Table V. 2
nd

 Order Complex Zero Classes

Real Part Category Form

0 DQC (s2a2)

+ve DXP s2asb

-ve DXN s2asb

Note that 4b > a
2
 in order for the polynomial to

have complex zeros. Thus „b‟ is always positive and

the sign of „a‟ would determine the category.

 In classifying the category of a given polynomial

expression, first we calculate its order. The Maple

function degree(expr,var) gives the highest

order of the provided expression with respect to the

given variable. In our case, we look for the degrees 0,

1, and 2 only. However, the zeros of a given

polynomial are hard to be distinguished whether they

are positive or negative or even real or complex since

they are symbolic expressions. Thus, the following

algorithm is used:

0
th

 Order: Zero degree expressions of the Laplace

frequency, s, are the simplest. If required, a check

whether the expression is positive or negative can be

made by searching for a minus sign symbol. Since the

investigated expressions are functions of resistors and

capacitors, all additive and multiplicative

combinations of components are positive unless there

is a subtraction operation in the expression. In that

case, one might be able to obtain a negative value by

adjusting the components. If no minus symbol exits,

then definitely the constant is positive. If however a

minus sign is found, then there is a potential of

having a negative constant. The Maple function

„search (string, pattern)‟ is used to check

the existence of the „-‟ symbol in an expression.

1
st
 Order: For the first degree polynomials of the

general form a+bs, we first evaluate the expression at

s=0 using the Maple function „eval (expr, var

= value)‟. When the result is zero, then the

expression is definitely classified as S0 category

disregarding any possible multiplicative constant; if

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 29 | P a g e

not, then the expression has either a positive or a

negative zero. When no minus symbol is detected in

the expression (b/a) after simplification using the

simplify(expr) function, then we classify the

expression as S1N category; otherwise, it can

potentially be an S1P category and will be labeled so.

It is also possible to find one configuration that can

generate both negative and positive zeros by setting

the appropriate component values.

 One may argue that we can get an S0 class out of

S1N or S1P by setting the constant a=0. It is a

possibility; however, in most cases this causes a

circuit violation, having impossible components

values, or even zero valued components that

eventually changes the circuit configuration. Mind the

reader that once the negative feedback on an active op

amp circuit is set open, the behavior of the circuit is

no longer valid.

2
nd

 Order: In classifying the second degree

polynomials of the form a+b.s+c.s
2
, we first extract

the coefficients a, b, and c. The Maple function

coeff(expr,var,degree) is used. Then, we

check whether both (a=0 and b=0) to classify the D0

class. If not, then when a=0 alone, then the category

is either D1P or D1N. If however b=0 but a≠0, then

we have one of the DQs categories. Finally, if none of

the constants is zero, then we have one of the

remaining D2s categories. To distinguish between

(D1P and D1N) and (DQC and DQR), similar minus

symbol checks to the S1 case are made.

 For the remaining cases of D2, we need to know

whether the polynomial zeros are real or complex.

Since the constants are symbolic, it is hard to

recognize some of the categories definitely. We

propose solving for the zeros symbolically first: if the

simplified zeros do not contain a square root, then

definitely the zeros are real due to the positive

components values. The polynomial can then be

classified as DNN, DNP, or DPP. We are still not

sure whether the zeros are complex, but the

expression will be labeled either DXN or DXP based

on the existence of the minus symbol in b/c.

 In summary, the above approach is used in

classifying symbolic polynomials into the proposed

categories. The conditions used in the classification

algorithm when a target polynomial is sought are

listed in Table VI, while the definitely and possibly

classified polynomials are shown in Table VII; it also

shows all the other possible categories in the

indeterminate cases.

Table VI. Conditions for Polynomial Classification

Polynomial Conditions

NZ a degree(H,s)=0

S0 s coeff(H,s,0)=0

S1N sa coeff(H,s,1)/coeff(H,s,0)=1/a

S1P sa coeff(H,s,1)/coeff(H,s,0)=-1/a

D0 s2 coeff(H,s,0)=0,coeff(H,s,1)=0

D1N s.(sa)
 coeff(H,s,2)/coeff(H,s,1)=1/a

coeff(H,s,0)=0

D1P s.(sa)
 coeff(H,s,2)/coeff(H,s,1)=-1/a

coeff(H,s,0)=0

DNN (sa).(sb)

p:=solve(H,s); p[1]=-a,p[2]=-b

DNP (sa).(sb)

p:=solve(H,s); p[1]=-a,p[2]=b

DPP (sa).(sb)

p:=solve(H,s); p[1]=a,p[2]=b

DQR s2a2 coeff(H,s,2)/coeff(H,s,0)=-

1/a^2, coeff(H,s,1)=0

DQC s2a2 coeff(H,s,2)/coeff(H,s,0)=1/a^2

coeff(H,s,1)=0

DXN s2a.sb
coeff(H,s,2)/coeff(H,s,0)=1/b

coeff(H,s,1)/coeff(H,s,0)=1/a

DXP s2a.sb
coeff(H,s,2)/coeff(H,s,0)=1/b

coeff(H,s,1)/coeff(H,s,0)=-1/a

Table VII. Classification Possibilities

Classified as Possibilities are

NZ definitely NZ

S0 definitely S0

S1N definitely S1N

S1P possibly S1N or S1P

D0 definitely D0

D1P possibly D1N or D1P

D1N definitely D1N

DPP possibly DNN, DNP, DPP or DP2

DNP possibly DNN, DNP or DQR

DNN possibly DNN or DN2

DQC definitely DQC

DQR possibly DQR or DQC

DXP possibly DXP, DNN, DNP, DPP or DQC

DXN possibly DNN or DXN

IV. CIRCUIT DESIGN CONFIGURATIONS
Arbitrary transfer functions can be implemented in

different circuit configurations, both passive and

active. For years, designers use well-known circuits

developed long ago to implement their specific filters

and functions with the modifications they introduced.

For instant, a modified n
th

 order state variable filter is

proposed in [10] using n integrators to implement

LPF, HPF, and BPF filters. A study of the component

sensitivity to the filter specifications is also presented.

Another configuration specific to all-pole filters is

shown in [11] to implement low-pass filters with very

low sensitivity.

Although the goal of this work is to show the

power of utilizing symbolic programming in

achieving the desired interface, we propose a general

circuit configuration based on one operational

amplifier assumed to be ideal for simplicity. The

technique would work for any other design

configuration as well, and definitely engineers would

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 30 | P a g e

prefer to develop their own ideas. The proposed

circuit configuration is shown in Fig. 1.

Fig. 1. The proposed general circuit configuration

The four shaded networks in the general design

can be utilized to give more options to the resultant

circuit gain, or transfer function. If one of the

networks is not needed, it is then replaced suitably.

The main benefit of each network follows:

1. (TS) T-Structure Feedback Network:

considered by the impedance blocks Z2, Z5, and

Z6. It adds possibilities for complex poles and

zeros to the gain function.

2. (DF) Double Feedback Network: characterized

by the impedances Z3 and Z4. The only possible

network to yield double differentiator circuits.

3. (DI) Differential Input Network: characterized

by the impedance blocks Z7 and Z8. The network

yields positive zeros and poles.

4. (PF) Positive Feedback Network: characterized

by the impedance blocks Z9 and Z10. It gives the

flexibility of having both positive and negative

zeros and poles.

The general circuit can be configured by utilizing

as many networks as possible. When a network is not

utilized, it will be eliminated properly (e.g. the T-

Structure is replaced by impedance Z2 only, shorting

Z5 and opening Z6 out). In that, the total number of the

different circuit configurations is 16 as shown in Fig.

3. Table VIII summarizes the different circuit

configurations setup and the number of remaining

impedance blocks.

In regard to the impedance configuration, many

arrangements are possible to include passive or even

active components. In this work, we propose only the

use of passive resistors and capacitors as they are the

most used elements in analog circuits. The

arrangements used are only four types shown in Fig.

2, namely a resistor, a capacitor, a series resistor with

a capacitor, and a parallel resistor with a capacitor.

Fig. 2. The proposed impedance configurations

Table VIII. Circuit Configurations Setup

cfg. TS DI PF DF Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 N

A00 0 0 0 0 . . 0 ∞ 0 ∞ ∞ ∞ 0 ∞ 2

A01 0 0 0 1 0 ∞ ∞ ∞ 0 ∞ 4

A02 0 0 1 0 . . 0 ∞ 0 ∞ ∞ ∞ . . 4

A03 0 0 1 1 0 ∞ ∞ ∞ . . 6

A04 0 1 0 0 . . 0 ∞ 0 ∞ ∞ . . ∞ 4

A05 0 1 0 1 0 ∞ . . . ∞ 7

A06 0 1 1 0 . . 0 ∞ 0 ∞ ∞ . . . 5

A07 0 1 1 1 0 ∞ 8

A08 1 0 0 0 . . 0 ∞ . . ∞ ∞ 0 ∞ 4

A09 1 0 0 1 ∞ ∞ 0 ∞ 6

A10 1 0 1 0 . . 0 ∞ . . ∞ ∞ . . 6

A11 1 0 1 1 ∞ ∞ . . 8

A12 1 1 0 0 . . 0 ∞ . . ∞ . . ∞ 6

A13 1 1 0 1 ∞ 9

A14 1 1 1 0 . . 0 ∞ . . ∞ . . . 8

A15 1 1 1 1 10

N: number of impedance blocks exists in the configuration

V. CIRCUIT ANALYSIS
Assuming ideal operational amplifiers and using

Kirchhoff laws, one could analyze each of the 16

different circuits of Table VIII and calculate the gain

as a function of all circuit impedances. Alternatively,

we could analyze the general configuration and then

substitute for the short or open circuits for the missing

impedance blocks. The circuit analysis we present

utilizes the symbolic programming too. Starting with

Kirchhoff Current Law at the different nodes of the

circuit and enforcing the equality of the positive and

negative voltage terminals of the op amp, we have the

set of equations in (2).





























































vv

Z

vv

Z

v

Z

vv

Z

vv

Z

vv

Z

vv

Z

v

Z

vv

Z

vv

Z

vv

Z

vv

Z

vv

Z

vv

oyyy

yx

osx

xxoxxs

562

21

10987

7143

 (2)

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 31 | P a g e

Fig. 3. Possible circuit configurations

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 32 | P a g e

We solve these five equations with respect to the

five unknowns vx, vy, v

, v


, and vo, using the Maple

function solve({eqns},{var}) to get the

solution for vo, which is quite long and includes 40

additions, 210 multiplications, and one division. The

software package also includes an optimization

library to reduce the number of arithmetic operations

by introducing temporary variable assignments:

optimize(expr). When utilized, the optimum

circuit transfer function now contains only 29

additions, 45 multiplications, one division, and 15

assignments. The optimized circuit transfer function

assignments are listed in Table IX.

 Once the general circuit is analyzed, the transfer

functions of the different configurations can then be

obtained by taking the limit as their specific

impedances reach either zero or infinity according to

Table VIII. For example, the circuit configuration

A04 has a transfer function calculated by the Maple

command limit (H,{Z3=0,Z4=infinity,

Z5=0,Z6=infinity,Z7=infinity, Z10=

infinity}). It is then further optimized to have a

minimum number of arithmetic operations.

Table IX. Optimized General Transfer Function
t1 = Z2+Z5

t2 = Z2*Z6

t3 = Z5*Z9

t4 = Z7*Z9

t5 = -Z1-Z4

t6 = -Z2-Z6

t7 = Z6*Z10*Z1

t8 = Z10*t4

t9 = t6*Z8

t10 = Z6*t8

t11 = Z3*Z5*t8

t12 = Z4*Z9*t7

t13 = Z4*t10

t14 = Z1*t13+Z2*t11+Z8*t12+(t12+t13+

 (Z1+t1)*t10)*Z3

H = (Z1*t11+((-Z10-Z9)*Z8*Z7*t2+(t9*

 t4+((Z3+Z8)*Z9*Z1+((Z3+Z1)*Z9+t9)

 *Z7)*Z10)*Z5)*Z4+t14)/(((-Z4*t3+(

 -t3+Z6*Z4)*Z10)*Z3*Z1+((t7+(-t2+(

 -Z1+t6)*Z5)*Z9)*Z4+(t5*t3+(Z2*Z5+

 (-t5+t1)*Z6)*Z10)*Z3)*Z7)*Z8+t14)

VI. TRANSFER FUNCTION SEARCH
Among the 16 different possible circuit

configurations, A00 to A15, an exhaustive search

begins incorporating the 4 suggested configurations

for each impedance block in every circuit. In each

search, the definite classifications of the numerator

and denominator of the circuit transfer function are

reported in a database. Mind the reader that the

algorithm gives definite classifications as well as

possibilities; hence, extra tests are performed later for

those cases.

First we report the statistics of the classification

of each configuration. Table X shows the number of

polynomials in either the numerator or the

denominator of the transfer function classified by the

algorithm as such. Of course a better statistics would

be to distinguish the rational function in detail, but

this would make the table size 14
2
 = 196 (column) for

each of the 16 configuration (row).

The numbers in Table X give an idea on how the

different circuit configurations yield the different

polynomial classes. For instant, none of the

configurations yields a DQC or a DQR polynomial in

definite. On the other hand we noticed that the most

polynomials found were DXPs and DXNs which

could possibility turn out to DQCs or DQRs.

VII. RESULTS
A. The Primary Set Coverage

The minimum set of transfer functions that can

implement any given function is the set of the rational

functions with prime polynomials; namely the 13

transfer functions shown in the first row of Table XI.

Mixed transfer functions or higher order functions

can simply be built by cascading multiple primes.

Table XI shows also the coverage count of each

circuit configuration to each prime transfer function

at the first search phase; i.e., when considering the

define detections. Again the definitely detected

polynomials by the algorithm which are also prime

ones are only four: NZ, S0, S1N, and DQC. These are

highlighted in the table. The remaining primes (S1P,

DXN, and DXP) were extracted from the second

search phase of possible detections. Notice that the

transfer functions involving DXP were never detected

in the definite phase.

Once all the prime transfer functions were

extracted, selection criteria were applied to choose the

optimum circuit implementation for a given transfer

function. We consider in this work the following

preferable features:

 Real Components: obviously implementations

with negative-valued components are rejected,

which can be symbolically tested case by case.

 Component Count: the least number of

components, especially the capacitors are more

preferable.

 Feature Independence: the wider constants

ranges such as gain, frequency, quality, and

damping coefficient which impose least

restrictions are selected.

 Identical Elements: implementations with as

many equal capacitors and resistors values are

more preferable than the mixed ones.

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 33 | P a g e

Table X. Circuit Configurations Setup

cfg. NZ S0 S1N S1P D0 D1P D1N DPP DNP DNN DQC DQR DXP DXN

A00 10 8 12 0 0 0 0 0 0 2 0 0 0 0

A01 23 37 98 0 8 44 0 0 0 33 0 0 131 0

A02 15 9 84 72 0 30 8 2 63 74 0 0 29 48

A03 46 74 395 171 16 273 5 0 877 474 0 0 127 194

A04 15 9 84 72 0 30 8 2 63 74 0 0 29 48

A05 4 0 148 192 0 20 64 0 1226 0 0 0 1765 217

A06 10 2 0 262 0 0 42 4 547 0 0 0 68 241

A07 4 0 0 671 0 0 163 0 6101 0 0 0 423 1482

A08 29 36 131 0 9 55 0 0 10 71 0 0 63 0

A09 20 26 438 0 6 242 0 0 0 300 0 0 940 0

A10 12 4 170 138 0 78 38 0 601 568 0 0 182 121

A11 40 52 587 174 12 455 2 0 2620 1434 0 0 236 12

A12 47 75 354 152 16 256 12 2 881 410 0 0 30 109

A13 4 0 0 490 0 0 150 0 6114 0 0 0 355 611

A14 9 1 0 443 0 0 121 2 2713 0 0 0 99 560

A15 4 0 0 628 0 0 212 0 11760 0 0 0 70 990

Sum 292 333 2501 3465 67 1483 825 12 33576 3440 0 0 4547 4633

Table XI. Phase I Search Detection of the Prime Transfer Function Set

 1 2 3 4 5 6 7 8 9 10 11 12 13

TF :
NZ

NZ

0S

NZ

NS

NZ

1

PS

NZ

1

DQC

NZ

DXN

NZ

DXP

NZ

NZ

S0

NZ

NS1

NZ

PS1

NZ

DQC

NZ

DXN

NZ

DXP

A00 2 1 2 - - - - 1 2 - - - -

A01 2 - 11 - - 7 - - - - - - -

A02 4 - - 6 - - - - 1 - - - -

A03 4 - - 22 - 16 - - - - - - -

A04 4 - 1 - - - - - - 6 - - -

A05 2 - - - - - - - - - - - -

A06 4 - - 1 - - - - - 1 - - -

A07 2 - - - - - - - - - - - -

A08 2 1 1 - - - - 1 13 - - 5 -

A09 2 - 10 - - 5 - - - - - - -

A10 4 - - 4 - - - - - - - - -

A11 4 - - 20 12 - - - - - - - -

A12 4 - 1 - - - - - - 22 16 - -

A13 2 - - - - - - - - - - - -

A14 4 - - 1 - - - - - - - - -

A15 2 - - - - - - - - - - - -

Sum 48 2 26 54 12 28 0 2 16 29 16 5 0

Based on these suggested criteria, Table XIII

shows a solution to the prime transfer function set

along with the design equations for a given feature

set. This specific list however may not be preferable

in different situations due to other selection criteria

than the ones chosen in this study. For example, some

applications have more emphasis on the input

impedance, power ratings, noise levels, error offsets,

and so on. For that, the readers have the freedom to

program their own desired set of preferences that best

suit their applications.

In general, the circuit configurations A00, A02,

A04, A11, and A12 implement the whole prime

transfer function set. Note that the second order

polynomials of the prime set are implemented with

similar configurations as possible by adjusting the „d‟

parameter in the range 1 < d < 1, including the case

d = 0 for the DQC polynomials.

For the last entry of Table XIII, the design

equations use a constant , which is the real solution

of a 3
rd

 order equation. Fig. 4 shows this  value at

different cases.

-1 -0.5 0 0.5 1
10

0

10
1

10
2

d



 Values at different (A,d)

A=0.1

A=1

A=5

A=10

Fig. 4.  values at different gain and d constants

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 34 | P a g e

B. Secondary Set Coverage

Although any transfer function can be implemented

by decomposing it into cascaded prime functions, the

proposed circuit configuration is capable of

implementing higher order functions directly. First, it

is worth mentioning that some of configurations can

uniquely implement certain secondary transfer

functions that no other configuration is capable of.

Table XII shows these configurations and their

unique secondary transfer function set.

Table XII. Unique Coverage of Configurations

cfg. TF Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

A00 S0/DNN 3 4 0 ∞ 0 ∞ ∞ ∞ 0 ∞

A02
S1N/DQR 1 2 0 ∞ 0 ∞ ∞ ∞ 2 1

D1N/DQR 2 1 0 ∞ 0 ∞ ∞ ∞ 1 2

A06 DXN/DQR 1 3 0 ∞ 0 ∞ ∞ 1 2 1

A08

D1N/NZ 2 1 0 ∞ 1 2 ∞ ∞ 0 ∞

DNN/NZ 2 3 0 ∞ 1 2 ∞ ∞ 0 ∞

S1N/D0 1 2 0 ∞ 2 1 ∞ ∞ 0 ∞

DNN/D0 4 2 0 ∞ 2 1 ∞ ∞ 0 ∞

S1N/DNN 1 4 0 ∞ 4 3 ∞ ∞ 0 ∞

D1N/DNN 2 4 0 ∞ 4 1 ∞ ∞ 0 ∞

DNN/DNN 4 4 0 ∞ 4 1 ∞ ∞ 0 ∞

A11
NZ/DQC 1 2 1 2 2 2 ∞ ∞ 1 1

D0/DQC 3 1 3 1 1 1 ∞ ∞ 1 1

0: short circuit, ∞: open circuit, 1:4 according to Fig. 2

The reminder of all possible second order transfer

functions can be tried out too and with multiple

possible solutions. In this paper, the prime set of

transfer functions is very sufficient to demonstration

the usefulness of utilizing the symbolic programming

in implementing a given transfer function into analog

circuit. An example however is illustrated; suppose

that the following differentiator interface function

given in (3) is needed to be implemented in an analog

active circuit:

2100000,10

100

ss

s
H


 (3)

The transfer function in (3) has two complex

conjugate poles with negative real parts, and one zero

at zero. It is then classified as S0/DXN, which can

either be decomposed into two prime functions S0/NZ

and NZ/DXN or can directly be implemented by

searching for the suitable circuit configuration. The

search in the constructed database of the general

configuration circuit yields 42 potential solutions

involving A01 and A09 circuit configurations. When

examining the possible solutions, some were found to

implement the given function but with negative

component values, while others have more

component count. The programmed conditions when

a configuration is used from the database are:

 coeff(denom(H),s,1)/

coeff(denom(H),s,0)=2*d/w0

 coeff(denom(H),s,2)/

coeff(denom(H),s,0)=1/w0^2

When executed in Maple, the design equations for

the circuit component are:

33

2
03

2
4

034
2

44

034

41

12

12

1

CC
CR

CdR
C

RR
CdR

RR












 (4)

Choices for R4 and C3 in (4) are open as long as

all the other components become positive. We can

then choose to set R4 to resonate C3 and the design

equations of (4) become:

030
2

2

00

4

00

1

11
CCCdC

Cd
R

Cd
R 





 (5)

Finally, for the transfer function of (3), the actual

circuit components for a given choice of C0 are:

F1nF250k20k20 3241  CCRR (6)

And the circuit implementation is shown in Fig. 5.

Fig. 5. Circuit implementation of example transfer

function (3)

Circuit simulation is carried out to prove the

equivalence of the transfer function. Fig. 6 shows the

bode diagrams from the circuit simulator and the

mathematical transfer function, which proves the

equivalence. Note that the choices for the independent

variables make room for other considerations such as

the gain of the circuit. In this specific example, the

gain of the transfer function and the circuit match

with the selected values.

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 35 | P a g e

Table XIII. Optimum circuit implementation of the prime transfer function set

NZ

NZ AH 

RAR

RR





2

1

0S

NZ
s

A
H 

CC

CA
R






2

1

1

NS

NZ

1

0

0





s

A
H

CC

C
R

CA
R









2

0

2

0

1

1

1

PS

NZ

1

0

0





s

A
H

 

 

CC

RAR

RR
AC

R










2

10

9

0

1

1

1

1

DQC

NZ

DXN

NZ

DXP

NZ

2
00

2

2
0

2 




sds

A
H

11

225.1





d

A

 

 
 

CCCCC

RR

RAR
AC

Add
R

AC

Add
R
















6542

9

10

0

2

3

0

2

1

1
45

151293

2

151293

NZ

S0 sAH 

CC
C

A
R





1

2

NZ

NS1  0

0




 s
A

H

 CC
C

A
R

C
R









1

0

2

0

1

1

NZ

PS1
 0

0




 s
A

H

1A

 

CC

RR

R
A

A
R

AC

A
R











1

8

9

0

2

1

1

NZ

DQC

NZ

DXN

NZ

DXP

 2
00

2

2
0

2 


 sds
A

H

11  d
where  is the real solution of:

   AdAdA  2231 23

 

 

 

CCCRR

R
d

R

CR

dC
R

CR


















618

2

2

9

0
5

2
0

2

0
1

12

12

12

1

1

Amjad Fuad Hajjar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.27-36

 www.ijera.com 36 | P a g e

(a)

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

M
a
g

n
it
u
d
e

 (
a
b

s
)

Mathematical Bode Plot

Frequency (Hz)

(b)

Fig. 6. Bode plots of (a) circuit simulator, and (b) the

mathematical transfer function

VIII. CONCLUSION
Utilizing symbolic programming in autonomous

circuit synthesis was presented. Although a general

circuit configuration was proposed to implement any

arbitrary transfer function, the goal of this work was

to show the usefulness of symbolic programming for

engineers and researchers in advancing their new

ideas and designs whenever needed. The 2
nd

 order

transfer function study presented can be expanded

intelligently to accommodate for higher order

functions as well as better designs suitable for ones

needed and requirements.

REFERENCES
[1] G. Sussman, R. Stallman, “Heuristic

Techniques in Computer-Aided Circuit

Analysis,” IEEE Transaction on Circuits and

Systems, CAS-22, 1975

[2] R. Harjani, R. Rutenbar, L. Carey, “A

Prototype Framework for Knowledge-Based

Analog Circuit Synthesis,” 24
th

 Design

Automation Conference, 1987, 42–49

[3] J. Lohn, S. Colombano, “A Circuit

Representation Technique for Automated

Circuit Design,” IEEE Transactions on

Evolutionary Computation, 3(3), Sept. 1999

[4] J. Lohn, G. Haith, S. Colombano, D.

Stassinopoulos, “Towards Evolving Electronic

Circuits for Autonomous Space Applications,”

IEEE Aerospace Conference Proceedings, 5,

March 2000, 473-486

[5] S. Zhao, L. Jiao, J. Zhao, Y. Wang,

“Evolutionary Design of Analog Circuits with

a Uniform-Design Based Multi-Objective

Adaptive Genetic Algorithm,” IEEE

NASA/DoD Conference on Evolvable

Hardware, July 2005, 26-29

[6] A. Das, R. Vemuri, “GAPSYS: A GA-based

Tool for Automated Passive Analog Circuit

Synthesis,” IEEE International Symposium on

Circuits and Systems, May 2007, 2702-2705

[7] J. He, K. Zou, M. Liu, “Section-Representation

Scheme for Evolutionary Analog Filter

Synthesis and Fault Tolerance Design,” 3
rd

Int’l Workshop on Advanced Computational

Intelligence, August 2010, 265-270

[8] F. Wang, Y. Li, “Analog Circuit Design

Automation Using Neural Network-Based

Two-Level Genetic Programming,” 5
th

International Conference on Machine

Learning and Cybernetics, Dalian, August

2006, 2087-2092

[9] R. Henderson, L. Ping, J. Seweil, “Analog

Integrated Filter Compilation,” Analog

Integrated Circuits and Signal Processing, 3,

1993, 217-228

[10] A. Oksasoglu, L. Huelsman, “A Modified State

Variable Filter Realization,” Analog Integrated

Circuits and Signal Processing, 1, 1991, 21-32

[11] G. Moschytz, “Low-Sensitivity, Low-Power

Active-RC Allpole Filters Using Impedance

Tapering,” IEEE Transactions on Circuits And

Systems—II: Analog and Digital Signal

Processing, 46(8), 1999

