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ABSTRACT 
The employment of symbolic programming in analog circuit design for system interfaces is proposed. Given a 

rational transfer function with a set of specifications and constraints, one may autonomously synthesize it into an 

analog circuit. First, a classification of the target transfer function polynomials into 14 classes is performed. The 

classes include both stable and unstable functions as required. A symbolic exhaustive search algorithm based on 

a circuit configuration under investigation is then conducted where a polynomial in hand is to be identified. For 

illustration purposes, a set of complete design equations for the primary rational transfer functions is obtained 

targeting all classes of second order polynomials based on a proposed general circuit configuration. The design 

consists of a single active element and four different circuit structures. Finally, an illustrative example with full 

analysis and simulation is presented. 
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I. INTRODUCTION 
Even with the advances in the digital world of 

electronics, analog circuit design is still the heart and 

most sensitive part of many engineering systems 

involving sensing and actuation. In consequence, 

multiple different ways are employed in designing 

analog circuits, hand-design being the obvious and 

foremost tactic. Nevertheless, automating the design 

process of analog circuits is becoming more crucial, 

not only for the time-to-market constraints but also 

for having better quality designs. Hence, automation 

methods are developed in this field such as heuristics 

inspection [1], knowledge-based synthesis [2], 

evolutionary computation involving genetic 

algorithms [3-7], and neural network based designs 

[8]. Once the synthesized circuit is completed, it is 

then verified to satisfy the required specifications. 

 

In regard to the software applications assisting 

engineers in analog circuit design, a nice survey is 

presented in [9] comparing the different CAD tools in 

terms of features, simulation domains, speed, 

flexibility, and ease-of-use. Yet, most of the tools are 

based on numerical simulations and syntheses lacking 

the deployment of symbolic programming. 

 

Computer Algebra Systems for symbolic and 

numeric programming have been developed for a 

long time and are becoming very power tools for 

researchers and engineers aiding in mathematical 

problems and simulations. When solving a problem 

by thoughts and ideas, it would be very helpful to get 

assistance from a tool that quickly carries out all the 

mathematical developments symbolically. Thus 

utilizing symbolic programming in this field is 

advantageous. The objective of this work is then to 

answer the following question: how to implement a 

certain transfer function in analog circuit to interface 

a specific unit in an electronic system? 

 

In this paper, the utilization of symbolic 

programming in implementing arbitrary transfer 

functions to analog circuits is presented. First, a 

classification of an arbitrary polynomial is proposed, 

followed by an algorithm for symbolically and 

autonomously identifying the polynomial category. A 

general circuit configuration is also proposed as an 

example to emphasize the effectiveness of symbolic 

programming in this field. Finally a complete set of 

design equation for an arbitrary rational transfer 

function is illustrated. 

  

II. POLYNOMIAL CATEGORIZATION 
The focus of this work is to implement an arbitrary 

rational transfer function of the general form: 
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where ai, bj are real coefficients, aN, bM ≠ 0, N and 

M are the orders of the numerator and denominator of 

the transfer function, respectively. Without loss of 

generality, studying up to the second order would be 

sufficient since the zeros and poles of the function 

must be real or complex conjugates, hence the higher 

orders can be obtained by cascading multiple lower 

order stages. In that, we classify the numerator and 

denominator polynomials into 14 categories based on 

their zeros as shown in Table I. 
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Table I. Polynomial Categories 

# Cat Form Zeros 

01 NZ a - 

02 S0 s 0 

03 S1N sa a 

04 S1P sa a 

05 D0 s2 0,0 

06 D1N s.(sa)  0,a 

07 D1P s.(sa) 0,a 

11 DQR s2a2 ±a 

12 DQC s2a2 ±ja 

08 DNN (sa).(sb) a,b 

09 DNP (sa).(sb) a,b 

10 DPP (sa).(sb) a,b 

13 DXN s2asb A±jB 

14 DXP s2asb A±jB 

Note: a, b, A, B are all positive constants 

 

These polynomials can also be classified into two 

sets: primary and secondary, where the secondary 

polynomials can be obtained from the primary set 

using two cascaded stages. Thus, any arbitrary 

transfer function can be achieved when all the 

primary polynomials are implemented. 
 

Table II. Primary and Secondary Polynomials 

Primary Set Secondary Set 

NZ a  D0 s2 S0× S0 

S0 s  D1N s.(sa) S0× S1N 

S1N sa  D1P s.(sa) S0× S1P 

S1P sa  DQR s2a2 S1N× S1P 

DQC s2a2  DNN (sa).(sb) S1N× S1N 

DXN s2asb  DNP (sa).(sb) S1N× S1P 

DXP s2asb  DPP (sa).(sb) S1P× S1P 

 

III. CLASSIFICATION ALGORITHM 
One may classify a polynomial expression simply by 

its order. However, the behavior differs among the 

same order based on the type of its zeros. For the first 

order polynomials, we certainly expect its zero to be 

real since we are implementing it with a real circuit. 

Thus, the classification of the first order polynomials 

is based on the sign of its zero. Let „a’ be a positive 

real number. We then have three different classes 

(Table III): 

 

Table III. 1
st
 Order Zero Classes 

Zero Category Form 

0 S0 s 

+ve S1P sa 

-ve S1N sa 

 

For a second order polynomial, its zeros can either 

be real or a pair of complex conjugates. In the real 

zero case, the nine categories shown in Table IV are 

possible based on the signs of the zeros, given that „a‟ 

and „b‟ are positive constants. 

 

Table IV. 2
nd

 Order Real Zero Classes 

1st  

Zero 

2nd  

Zero 
Category Form 

0 0 D0 s2 

0 +ve D1P s.(sa) 

0 -ve D1N s.(sa) 

+ve +ve DPP, DP2 (sa).(sb) or (sa)2 

+ve -ve DNP, DQR (sa).(sb) or (s2a2) 

-ve -ve DNN, DN2 (sa).(sb) or (sa)2 

 

For the complex conjugate zeros, the real part of 

the zeros would distinguish the category of the 

polynomial as shown in Table V. 
 

Table V. 2
nd

 Order Complex Zero Classes 

Real Part Category Form 

0 DQC (s2a2) 

+ve DXP s2asb 

-ve DXN s2asb 

 

Note that 4b > a
2
 in order for the polynomial to 

have complex zeros. Thus „b‟ is always positive and 

the sign of „a‟ would determine the category. 

 

     In classifying the category of a given polynomial 

expression, first we calculate its order. The Maple 

function degree(expr,var) gives the highest 

order of the provided expression with respect to the 

given variable. In our case, we look for the degrees 0, 

1, and 2 only. However, the zeros of a given 

polynomial are hard to be distinguished whether they 

are positive or negative or even real or complex since 

they are symbolic expressions. Thus, the following 

algorithm is used: 

 

0
th

 Order: Zero degree expressions of the Laplace 

frequency, s, are the simplest. If required, a check 

whether the expression is positive or negative can be 

made by searching for a minus sign symbol. Since the 

investigated expressions are functions of resistors and 

capacitors, all additive and multiplicative 

combinations of components are positive unless there 

is a subtraction operation in the expression. In that 

case, one might be able to obtain a negative value by 

adjusting the components. If no minus symbol exits, 

then definitely the constant is positive. If however a 

minus sign is found, then there is a potential of 

having a negative constant. The Maple function 

„search (string, pattern)‟ is used to check 

the existence of the „-‟ symbol in an expression. 

 

1
st
 Order: For the first degree polynomials of the 

general form a+bs, we first evaluate the expression at 

s=0 using the Maple function „eval (expr, var 

= value)‟. When the result is zero, then the 

expression is definitely classified as S0 category 

disregarding any possible multiplicative constant; if 
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not, then the expression has either a positive or a 

negative zero. When no minus symbol is detected in 

the expression (b/a) after simplification using the 

simplify(expr) function, then we classify the 

expression as S1N category; otherwise, it can 

potentially be an S1P category and will be labeled so. 

It is also possible to find one configuration that can 

generate both negative and positive zeros by setting 

the appropriate component values. 

 

     One may argue that we can get an S0 class out of 

S1N or S1P by setting the constant a=0. It is a 

possibility; however, in most cases this causes a 

circuit violation, having impossible components 

values, or even zero valued components that 

eventually changes the circuit configuration. Mind the 

reader that once the negative feedback on an active op 

amp circuit is set open, the behavior of the circuit is 

no longer valid. 

 

2
nd

 Order: In classifying the second degree 

polynomials of the form a+b.s+c.s
2
, we first extract 

the coefficients a, b, and c. The Maple function 

coeff(expr,var,degree) is used. Then, we 

check whether both (a=0 and b=0) to classify the D0 

class. If not, then when a=0 alone, then the category 

is either D1P or D1N. If however b=0 but a≠0, then 

we have one of the DQs categories. Finally, if none of 

the constants is zero, then we have one of the 

remaining D2s categories. To distinguish between 

(D1P and D1N) and (DQC and DQR), similar minus 

symbol checks to the S1 case are made. 

 

     For the remaining cases of D2, we need to know 

whether the polynomial zeros are real or complex. 

Since the constants are symbolic, it is hard to 

recognize some of the categories definitely. We 

propose solving for the zeros symbolically first: if the 

simplified zeros do not contain a square root, then 

definitely the zeros are real due to the positive 

components values. The polynomial can then be 

classified as DNN, DNP, or DPP. We are still not 

sure whether the zeros are complex, but the 

expression will be labeled either DXN or DXP based 

on the existence of the minus symbol in b/c. 

 

     In summary, the above approach is used in 

classifying symbolic polynomials into the proposed 

categories. The conditions used in the classification 

algorithm when a target polynomial is sought are 

listed in Table VI, while the definitely and possibly 

classified polynomials are shown in Table VII; it also 

shows all the other possible categories in the 

indeterminate cases. 

 

 

 

 

Table VI. Conditions for Polynomial Classification 

Polynomial Conditions 

NZ a degree(H,s)=0 

S0 s coeff(H,s,0)=0 

S1N sa coeff(H,s,1)/coeff(H,s,0)=1/a 

S1P sa coeff(H,s,1)/coeff(H,s,0)=-1/a 

D0 s2 coeff(H,s,0)=0,coeff(H,s,1)=0 

D1N s.(sa)
 coeff(H,s,2)/coeff(H,s,1)=1/a 

coeff(H,s,0)=0 

D1P s.(sa)
 coeff(H,s,2)/coeff(H,s,1)=-1/a 

coeff(H,s,0)=0 

DNN (sa).(sb)
 
p:=solve(H,s); p[1]=-a,p[2]=-b 

DNP (sa).(sb)
 
p:=solve(H,s); p[1]=-a,p[2]=b 

DPP (sa).(sb)
 
p:=solve(H,s); p[1]=a,p[2]=b 

DQR s2a2 coeff(H,s,2)/coeff(H,s,0)=-

1/a^2, coeff(H,s,1)=0 

DQC s2a2 coeff(H,s,2)/coeff(H,s,0)=1/a^2 

coeff(H,s,1)=0 

DXN s2a.sb 
coeff(H,s,2)/coeff(H,s,0)=1/b 

coeff(H,s,1)/coeff(H,s,0)=1/a 

DXP s2a.sb 
coeff(H,s,2)/coeff(H,s,0)=1/b 

coeff(H,s,1)/coeff(H,s,0)=-1/a 

 

Table VII. Classification Possibilities  

Classified as Possibilities are 

NZ definitely  NZ 

S0 definitely  S0 

S1N definitely  S1N 

S1P possibly  S1N or S1P 

D0 definitely  D0 

D1P possibly  D1N or D1P 

D1N definitely  D1N 

DPP possibly  DNN, DNP, DPP or DP2 

DNP possibly  DNN, DNP or DQR 

DNN possibly DNN or DN2 

DQC definitely  DQC 

DQR possibly  DQR or DQC 

DXP possibly  DXP, DNN, DNP, DPP or DQC 

DXN possibly  DNN or DXN 

 

IV. CIRCUIT DESIGN CONFIGURATIONS 
Arbitrary transfer functions can be implemented in 

different circuit configurations, both passive and 

active. For years, designers use well-known circuits 

developed long ago to implement their specific filters 

and functions with the modifications they introduced. 

For instant, a modified n
th

 order state variable filter is 

proposed in [10] using n integrators to implement 

LPF, HPF, and BPF filters. A study of the component 

sensitivity to the filter specifications is also presented. 

Another configuration specific to all-pole filters is 

shown in [11] to implement low-pass filters with very 

low sensitivity. 

 

Although the goal of this work is to show the 

power of utilizing symbolic programming in 

achieving the desired interface, we propose a general 

circuit configuration based on one operational 

amplifier assumed to be ideal for simplicity. The 

technique would work for any other design 

configuration as well, and definitely engineers would 
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prefer to develop their own ideas. The proposed 

circuit configuration is shown in Fig. 1. 

 

 
Fig. 1.  The proposed general circuit configuration 

 

The four shaded networks in the general design 

can be utilized to give more options to the resultant 

circuit gain, or transfer function. If one of the 

networks is not needed, it is then replaced suitably. 

The main benefit of each network follows: 

 

1. (TS) T-Structure Feedback Network: 

considered by the impedance blocks Z2, Z5, and 

Z6. It adds possibilities for complex poles and 

zeros to the gain function. 

2. (DF) Double Feedback Network: characterized 

by the impedances Z3 and Z4. The only possible 

network to yield double differentiator circuits. 

3. (DI) Differential Input Network: characterized 

by the impedance blocks Z7 and Z8. The network 

yields positive zeros and poles. 

4. (PF) Positive Feedback Network: characterized 

by the impedance blocks Z9 and Z10. It gives the 

flexibility of having both positive and negative 

zeros and poles. 

 

The general circuit can be configured by utilizing 

as many networks as possible. When a network is not 

utilized, it will be eliminated properly (e.g. the T-

Structure is replaced by impedance Z2 only, shorting 

Z5 and opening Z6 out). In that, the total number of the 

different circuit configurations is 16 as shown in Fig. 

3. Table VIII summarizes the different circuit 

configurations setup and the number of remaining 

impedance blocks. 

 

In regard to the impedance configuration, many 

arrangements are possible to include passive or even 

active components. In this work, we propose only the 

use of passive resistors and capacitors as they are the 

most used elements in analog circuits. The 

arrangements used are only four types shown in Fig. 

2, namely a resistor, a capacitor, a series resistor with 

a capacitor, and a parallel resistor with a capacitor. 

 
Fig. 2.  The proposed impedance configurations 

 

 

Table VIII. Circuit Configurations Setup 

cfg. TS DI PF DF Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 N 

A00 0 0 0 0 . . 0 ∞ 0 ∞ ∞ ∞ 0 ∞ 2 

A01 0 0 0 1 . . . . 0 ∞ ∞ ∞ 0 ∞ 4 

A02 0 0 1 0 . . 0 ∞ 0 ∞ ∞ ∞ . . 4 

A03 0 0 1 1 . . . . 0 ∞ ∞ ∞ . . 6 

A04 0 1 0 0 . . 0 ∞ 0 ∞ ∞ . . ∞ 4 

A05 0 1 0 1 . . . . 0 ∞ . . . ∞ 7 

A06 0 1 1 0 . . 0 ∞ 0 ∞ ∞ . . . 5 

A07 0 1 1 1 . . . . 0 ∞ . . . . 8 

A08 1 0 0 0 . . 0 ∞ . . ∞ ∞ 0 ∞ 4 

A09 1 0 0 1 . . . . . . ∞ ∞ 0 ∞ 6 

A10 1 0 1 0 . . 0 ∞ . . ∞ ∞ . . 6 

A11 1 0 1 1 . . . . . . ∞ ∞ . . 8 

A12 1 1 0 0 . . 0 ∞ . . ∞ . . ∞ 6 

A13 1 1 0 1 . . . . . . . . . ∞ 9 

A14 1 1 1 0 . . 0 ∞ . . ∞ . . . 8 

A15 1 1 1 1 . . . . . . . . . . 10 

N: number of impedance blocks exists in the configuration 

 

V. CIRCUIT ANALYSIS 
Assuming ideal operational amplifiers and using 

Kirchhoff laws, one could analyze each of the 16 

different circuits of Table VIII and calculate the gain 

as a function of all circuit impedances. Alternatively, 

we could analyze the general configuration and then 

substitute for the short or open circuits for the missing 

impedance blocks. The circuit analysis we present 

utilizes the symbolic programming too. Starting with 

Kirchhoff Current Law at the different nodes of the 

circuit and enforcing the equality of the positive and 

negative voltage terminals of the op amp, we have the 

set of equations in (2). 
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Fig. 3.  Possible circuit configurations
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We solve these five equations with respect to the 

five unknowns vx, vy, v

, v


, and vo, using the Maple 

function solve({eqns},{var}) to get the 

solution for vo, which is quite long and includes 40 

additions, 210 multiplications, and one division. The 

software package also includes an optimization 

library to reduce the number of arithmetic operations 

by introducing temporary variable assignments: 

optimize(expr). When utilized, the optimum 

circuit transfer function now contains only 29 

additions, 45 multiplications, one division, and 15 

assignments. The optimized circuit transfer function 

assignments are listed in Table IX. 

 

     Once the general circuit is analyzed, the transfer 

functions of the different configurations can then be 

obtained by taking the limit as their specific 

impedances reach either zero or infinity according to 

Table VIII. For example, the circuit configuration 

A04 has a transfer function calculated by the Maple 

command limit (H,{Z3=0,Z4=infinity, 

Z5=0,Z6=infinity,Z7=infinity, Z10= 

infinity}). It is then further optimized to have a 

minimum number of arithmetic operations. 

 

Table IX. Optimized General Transfer Function 
t1  = Z2+Z5 

t2  = Z2*Z6 

t3  = Z5*Z9 

t4  = Z7*Z9 

t5  = -Z1-Z4 

t6  = -Z2-Z6 

t7  = Z6*Z10*Z1 

t8  = Z10*t4 

t9  = t6*Z8 

t10 = Z6*t8 

t11 = Z3*Z5*t8 

t12 = Z4*Z9*t7 

t13 = Z4*t10 

t14 = Z1*t13+Z2*t11+Z8*t12+(t12+t13+  

     (Z1+t1)*t10)*Z3 

 

H   = (Z1*t11+((-Z10-Z9)*Z8*Z7*t2+(t9* 

      t4+((Z3+Z8)*Z9*Z1+((Z3+Z1)*Z9+t9) 

      *Z7)*Z10)*Z5)*Z4+t14)/(((-Z4*t3+( 

      -t3+Z6*Z4)*Z10)*Z3*Z1+((t7+(-t2+( 

      -Z1+t6)*Z5)*Z9)*Z4+(t5*t3+(Z2*Z5+ 

      (-t5+t1)*Z6)*Z10)*Z3)*Z7)*Z8+t14) 

 

VI. TRANSFER FUNCTION SEARCH 
Among the 16 different possible circuit 

configurations, A00 to A15, an exhaustive search 

begins incorporating the 4 suggested configurations 

for each impedance block in every circuit. In each 

search, the definite classifications of the numerator 

and denominator of the circuit transfer function are 

reported in a database. Mind the reader that the 

algorithm gives definite classifications as well as 

possibilities; hence, extra tests are performed later for 

those cases. 

First we report the statistics of the classification 

of each configuration. Table X shows the number of 

polynomials in either the numerator or the 

denominator of the transfer function classified by the 

algorithm as such. Of course a better statistics would 

be to distinguish the rational function in detail, but 

this would make the table size 14
2
 = 196 (column) for 

each of the 16 configuration (row). 

 

The numbers in Table X give an idea on how the 

different circuit configurations yield the different 

polynomial classes. For instant, none of the 

configurations yields a DQC or a DQR polynomial in 

definite. On the other hand we noticed that the most 

polynomials found were DXPs and DXNs which 

could possibility turn out to DQCs or DQRs. 

 

VII. RESULTS 
A. The Primary Set Coverage 

The minimum set of transfer functions that can 

implement any given function is the set of the rational 

functions with prime polynomials; namely the 13 

transfer functions shown in the first row of Table XI. 

Mixed transfer functions or higher order functions 

can simply be built by cascading multiple primes. 

Table XI shows also the coverage count of each 

circuit configuration to each prime transfer function 

at the first search phase; i.e., when considering the 

define detections. Again the definitely detected 

polynomials by the algorithm which are also prime 

ones are only four: NZ, S0, S1N, and DQC. These are 

highlighted in the table. The remaining primes (S1P, 

DXN, and DXP) were extracted from the second 

search phase of possible detections. Notice that the 

transfer functions involving DXP were never detected 

in the definite phase. 

 

Once all the prime transfer functions were 

extracted, selection criteria were applied to choose the 

optimum circuit implementation for a given transfer 

function. We consider in this work the following 

preferable features: 

 Real Components: obviously implementations 

with negative-valued components are rejected, 

which can be symbolically tested case by case. 

 Component Count: the least number of 

components, especially the capacitors are more 

preferable. 

 Feature Independence: the wider constants 

ranges such as gain, frequency, quality, and 

damping coefficient which impose least 

restrictions are selected. 

 Identical Elements: implementations with as 

many equal capacitors and resistors values are 

more preferable than the mixed ones. 
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Table X. Circuit Configurations Setup 

cfg. NZ S0 S1N S1P D0 D1P D1N DPP DNP DNN DQC DQR DXP DXN 

A00 10 8 12 0 0 0 0 0 0 2 0 0 0 0 

A01 23 37 98 0 8 44 0 0 0 33 0 0 131 0 

A02 15 9 84 72 0 30 8 2 63 74 0 0 29 48 

A03 46 74 395 171 16 273 5 0 877 474 0 0 127 194 

A04 15 9 84 72 0 30 8 2 63 74 0 0 29 48 

A05 4 0 148 192 0 20 64 0 1226 0 0 0 1765 217 

A06 10 2 0 262 0 0 42 4 547 0 0 0 68 241 

A07 4 0 0 671 0 0 163 0 6101 0 0 0 423 1482 

A08 29 36 131 0 9 55 0 0 10 71 0 0 63 0 

A09 20 26 438 0 6 242 0 0 0 300 0 0 940 0 

A10 12 4 170 138 0 78 38 0 601 568 0 0 182 121 

A11 40 52 587 174 12 455 2 0 2620 1434 0 0 236 12 

A12 47 75 354 152 16 256 12 2 881 410 0 0 30 109 

A13 4 0 0 490 0 0 150 0 6114 0 0 0 355 611 

A14 9 1 0 443 0 0 121 2 2713 0 0 0 99 560 

A15 4 0 0 628 0 0 212 0 11760 0 0 0 70 990 

Sum 292 333 2501 3465 67 1483 825 12 33576 3440 0 0 4547 4633 

 

Table XI. Phase I Search Detection of the Prime Transfer Function Set  

 1 2 3 4 5 6 7 8 9 10 11 12 13 

TF : 
NZ

NZ  

0S

NZ  

NS

NZ

1

 

PS

NZ

1

 
DQC

NZ  

DXN

NZ  

DXP

NZ  

NZ

S0  

NZ

NS1  

NZ

PS1  

NZ

DQC  

NZ

DXN  

NZ

DXP  

A00 2 1 2 - - - - 1 2 - - - - 

A01 2 - 11 - - 7 - - - - - - - 

A02 4 - - 6 - - - - 1 - - - - 

A03 4 - - 22 - 16 - - - - - - - 

A04 4 - 1 - - - - - - 6 - - - 

A05 2 - - - - - - - - - - - - 

A06 4 - - 1 - - - - - 1 - - - 

A07 2 - - - - - - - - - - - - 

A08 2 1 1 - - - - 1 13 - - 5 - 

A09 2 - 10 - - 5 - - - - - - - 

A10 4 - - 4 - - - - - - - - - 

A11 4 - - 20 12 - - - - - - - - 

A12 4 - 1 - - - - - - 22 16 - - 

A13 2 - - - - - - - - - - - - 

A14 4 - - 1 - - - - - - - - - 

A15 2 - - - - - - - - - - - - 

Sum 48 2 26 54 12 28 0 2 16 29 16 5 0 

 

Based on these suggested criteria, Table XIII 

shows a solution to the prime transfer function set 

along with the design equations for a given feature 

set. This specific list however may not be preferable 

in different situations due to other selection criteria 

than the ones chosen in this study. For example, some 

applications have more emphasis on the input 

impedance, power ratings, noise levels, error offsets, 

and so on. For that, the readers have the freedom to 

program their own desired set of preferences that best 

suit their applications. 

In general, the circuit configurations A00, A02, 

A04, A11, and A12 implement the whole prime 

transfer function set. Note that the second order 

polynomials of the prime set are implemented with 

similar configurations as possible by adjusting the „d‟ 

parameter in the range 1 < d < 1, including the case 

d = 0 for the DQC polynomials. 

For the last entry of Table XIII, the design 

equations use a constant , which is the real solution 

of a 3
rd

 order equation. Fig. 4 shows this  value at 

different cases. 

-1 -0.5 0 0.5 1
10

0

10
1

10
2

d



 Values at different (A,d)

A=0.1

A=1

A=5

A=10

 
Fig. 4.   values at different gain and d constants 
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B. Secondary Set Coverage 

Although any transfer function can be implemented 

by decomposing it into cascaded prime functions, the 

proposed circuit configuration is capable of 

implementing higher order functions directly. First, it 

is worth mentioning that some of configurations can 

uniquely implement certain secondary transfer 

functions that no other configuration is capable of. 

Table XII shows these configurations and their 

unique secondary transfer function set. 

 

Table XII. Unique Coverage of Configurations 

cfg. TF Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 

A00 S0/DNN 3 4 0 ∞ 0 ∞ ∞ ∞ 0 ∞ 

A02 
S1N/DQR 1 2 0 ∞ 0 ∞ ∞ ∞ 2 1 

D1N/DQR 2 1 0 ∞ 0 ∞ ∞ ∞ 1 2 

A06 DXN/DQR 1 3 0 ∞ 0 ∞ ∞ 1 2 1 

A08 

D1N/NZ 2 1 0 ∞ 1 2 ∞ ∞ 0 ∞ 

DNN/NZ 2 3 0 ∞ 1 2 ∞ ∞ 0 ∞ 

S1N/D0 1 2 0 ∞ 2 1 ∞ ∞ 0 ∞ 

DNN/D0 4 2 0 ∞ 2 1 ∞ ∞ 0 ∞ 

S1N/DNN 1 4 0 ∞ 4 3 ∞ ∞ 0 ∞ 

D1N/DNN 2 4 0 ∞ 4 1 ∞ ∞ 0 ∞ 

DNN/DNN 4 4 0 ∞ 4 1 ∞ ∞ 0 ∞ 

A11 
NZ/DQC 1 2 1 2 2 2 ∞ ∞ 1 1 

D0/DQC 3 1 3 1 1 1 ∞ ∞ 1 1 

0: short circuit, ∞: open circuit, 1:4 according to Fig. 2 

 

The reminder of all possible second order transfer 

functions can be tried out too and with multiple 

possible solutions. In this paper, the prime set of 

transfer functions is very sufficient to demonstration 

the usefulness of utilizing the symbolic programming 

in implementing a given transfer function into analog 

circuit. An example however is illustrated; suppose 

that the following differentiator interface function 

given in (3) is needed to be implemented in an analog 

active circuit: 

 

2100000,10

100

ss

s
H


  (3) 

 

The transfer function in (3) has two complex 

conjugate poles with negative real parts, and one zero 

at zero. It is then classified as S0/DXN, which can 

either be decomposed into two prime functions S0/NZ 

and NZ/DXN or can directly be implemented by 

searching for the suitable circuit configuration. The 

search in the constructed database of the general 

configuration circuit yields 42 potential solutions 

involving A01 and A09 circuit configurations. When 

examining the possible solutions, some were found to 

implement the given function but with negative 

component values, while others have more 

component count. The programmed conditions when 

a configuration is used from the database are: 

 

 coeff(denom(H),s,1)/ 

coeff(denom(H),s,0)=2*d/w0 

 coeff(denom(H),s,2)/ 

coeff(denom(H),s,0)=1/w0^2 

 

When executed in Maple, the design equations for 

the circuit component are: 
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 (4) 

 

Choices for R4 and C3 in (4) are open as long as 

all the other components become positive. We can 

then choose to set R4 to resonate C3 and the design 

equations of (4) become: 

 

030
2

2

00

4

00

1

11
CCCdC

Cd
R

Cd
R 





  (5) 

 

Finally, for the transfer function of (3), the actual 

circuit components for a given choice of C0 are: 

 

F1nF250k20k20 3241  CCRR  (6) 

 

And the circuit implementation is shown in Fig. 5. 

 

 
Fig. 5.  Circuit implementation of example transfer 

function (3) 

 

Circuit simulation is carried out to prove the 

equivalence of the transfer function. Fig. 6 shows the 

bode diagrams from the circuit simulator and the 

mathematical transfer function, which proves the 

equivalence. Note that the choices for the independent 

variables make room for other considerations such as 

the gain of the circuit. In this specific example, the 

gain of the transfer function and the circuit match 

with the selected values. 
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Table XIII. Optimum circuit implementation of the prime transfer function set 
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where  is the real solution of: 

   AdAdA  2231 23  
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Fig. 6.  Bode plots of (a) circuit simulator, and (b) the 

mathematical transfer function 

 

 

VIII. CONCLUSION 
Utilizing symbolic programming in autonomous 

circuit synthesis was presented. Although a general 

circuit configuration was proposed to implement any 

arbitrary transfer function, the goal of this work was 

to show the usefulness of symbolic programming for 

engineers and researchers in advancing their new 

ideas and designs whenever needed. The 2
nd

 order 

transfer function study presented can be expanded 

intelligently to accommodate for higher order 

functions as well as better designs suitable for ones 

needed and requirements. 
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